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Relationship Between Group Delay and Stored
Energy in Microwave Filters
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Abstract—In this paper, an expression for the time average
stored energy (t.a.s.e.) in a passive lossless two-port is derived
in terms of its scattering parameters. In particular, it is shown
that the t.a.s.e. in a passive lossless reciprocal symmetrical or
antimetrical two-port is proportional to the group delay. One
implication of this result is that the t.a.s.e., which is linked to the
power-handling capability in many passive filters used in practice,
is proportional to the group delay of the filter. This rigorous
derivation is based on a variational theorem, which has been used
in the past to prove energy storage results for passive lossless
one-ports and periodic two-ports.

Index Terms—Group delay, lossless two-ports, microwave filters,
power-handling capability, stored energy.

I. INTRODUCTION

T HE power-handling capability of microwave filters is often
limited by the breakdown of the dielectric inside the filter

resonators. In his consideration of the peak internal fields in
direct-coupled-cavity filters, Young [1], [2] sought to predict
the peak internal fields in these filters in terms of the group
delay of the filter. The basis of Young’s approach was the as-
sumption that the time average stored energy (t.a.s.e.) of the
electromagnetic fields inside the filter could be expressed in
terms of group delay. Young [1], [2] argued that in the passband
and in the transition region adjacent to the passband edges, di-
rect-coupled-cavity filters resembled periodic structures. Since
the relationship between t.a.s.e. and group delay in periodic
lossless two-ports was well established, Young assumed that
the same relationship could be used for the filter. Young high-
lighted the limitations of his intuitive approach and pointed out
that “ Of course, this will hold only to the extent that our di-
rect-coupled-cavity filter resembles an infinite uniform periodic
structure. ”

In order to obtain a more solid foundation for the prediction
of the power-handling capability of filters, the relationship be-
tween the t.a.s.e. in a passive lossless reciprocal two-port and
its two-port scattering parameters is investigated. The relation-
ships derived in this paper have been successfully used when
comparing the power-handling capability of different filter re-
alizations of the same power transfer function [3].

A rigorous derivation of the relationship between the t.a.s.e.
in passive lossless two-ports and the scattering parameters is
presented in this paper. In the case when the passive lossless
two-port is reciprocal and symmetrical or antimetrical, it is
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shown that the average stored energy is proportional to the
group delay. This covers most passive filters that are commonly
used in practice, i.e., Butterworth, Chebyshev, and general
Chebyshev filters. It also provides a justification for the as-
sumption made by Young, and it shows that his results are not
dependent on his argument that a direct-coupled-cavity filter
resembles a periodic structure.

The derivation is based on the variational theorem used by
Schwinger [4], who obtained an expression for the stored en-
ergy in a lossless two-port network in terms of its impedance
matrix. Collin employed the variational theorem to establish the
relationship between the t.a.s.e. and group delay in passive loss-
lessperiodic two-ports (see [5, p. 569]).

In order to demonstrate the validity of the equations derived
in this paper, the energy stored in a simple example network is
considered. Two cases are analyzed. In the first case, the net-
work does not have any symmetry properties and, in the second
case, it is symmetrical.

II. STOREDENERGY IN PASSIVE LOSSLESSTWO-PORTS

Assuming a harmonic variation of the electric field and
the magnetic field , the time average electric energy
and the time average magnetic energy stored in a volume

filled with a lossless dispersive-free material, which is devoid
of any energy sources, are given by [6]

(1)

(2)

where

(3)

and

(4)

The components of and are complex quantities and are
the rms-phasor representations of the fields in the-, -, and
-directions. The notation and indicates the complex

conjugate of and , respectively.
The total t.a.s.e in the volume is the sum of the time

average stored electric and the time average stored magnetic
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Fig. 1. Terminal voltages and currents and incident and reflected waves of a
two-port.

energy, i.e.,

(5)

The above volume integral can be transformed into an integral
over the closed surface of the volume using a variational the-
orem [4], [5], [7], i.e.,

(6)

where is a unity vector normal to the closed surfaceof the
volume and is directed into the volume. In the above, it
has been assumed that the volume contains only lossless nondis-
persive materials. However, Collin has shown that (6) also holds
when dispersive material is present in the volume. In the case
of a passive lossless two-port, (6) can be expressed as [4], [5]

(7)

where and are the terminal surfaces correspondingly to
ports 1 and 2, respectively. By applying Flouquet’s theorem, it
is possible to deduce from (7) that the t.a.s.e. in passive lossless
periodictwo-ports is proportional to the group delay (see [5, eq.
(8.47b)]).

Following Schwinger [4], the surface integrals in (7) can then
be expressed in terms of equivalent port rms-voltages
and equivalent port rms-currents , as indicated in Fig. 1.
Equation (7) then becomes

(8)
Equation (8) can be used to establish the relationship between
stored energy and any set of two-port parameters.

Assuming real and frequency-independent reference imped-
ances and at ports 1 and at 2, respectively, , , ,
and can be written in terms of power waves [8], i.e.,

(9)

where the incident power waves and are related to the
reflected power waves and by the scattering matrix ,
i.e.,

(10)

For a lossless network, the scattering matrix is unitary, i.e., the
following conditions are satisfied regardless of the choice of the
reference impedances:

(11)

(12)

(13)

(14)

Substituting (9) into (8) gives

(15)
and the t.a.s.e. in a passive lossless two-port is obtained in terms
of incident and reflected power waves.

III. SINGLE GENERATOR AND MATCHED LOAD

Suppose that a generator with internal resistanceis con-
nected to port 1 and that port 2 is terminated in its reference
impedance , as shown in Fig. 1. In this case

(16)

and (10) reduces to

(17)

(18)

Substituting these equations into (15) and employing the unitary
condition (11), the t.a.s.e. in the two-port is

(19)

Equation (19) is valid for any passive lossless two-port. The case
when a generator is connected to port 2 and port 1 is terminated
in its reference impedance can be treated in an identical fashion
to yield a result that can be obtained from (19) by simply inter-
changing the subscripts 1 and 2.

By expressing the scattering parameters in polar form, i.e.,
, and making use of the expression obtained

differentiating (11), i.e.,

(20)

(19) can be simplified. When , the incident
power from the generator is neither totally reflected at the pas-
sive lossless two-port nor totally transmitted to the load and

. In this case, and can be expressed as
and . Since neither
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nor are zero, there is no problem in defining and
and the t.a.s.e. in the two-port [see (19)] can be written as

(21)

Substituting (20) into (21) and making use of (11) gives

(22)
It is not possible to further reduce (22) unless some restrictions
are placed on the passive lossless two-port. Hence, consider a
passive lossless two-port, which is also reciprocal, i.e.,

. The unitary conditions (11) and (12) then imply that

(23)

and a condition on the phases of , , and can be ob-
tained from (13) or (14)

(24)

(25)

Differentiating (25) yields

(26)

However, (26) is not sufficient to further reduce (22), but if ad-
ditionally, the two phases and differ only by a constant

, i.e.,

(27)

(26) gives

(28)

and, in this case, the t.a.s.e. is

(29)

after substituting (28) into (22). In this derivation, it has been
necessary to assume that . It remains to consider
Cases (I) and (II) .

A. Case (I):

When , all of the incident power from the generator
reaches the load, and from (11), , and from (20)

(30)

In this case, (19) reduces to

(31)

where is the phase of . This is the same as (29), but
nothing other than a passive lossless two-port has been assumed.
It corresponds, for example, to a transmission line terminated in
a matched load and excited by a matched generator. In this case,
the quantity is the available power of the generator and

is the associated group delay of the transmission
line.

B. Case (II):

When , i.e., , none of the incident power
from the generator reaches the load, and from (11),
and from (20)

(32)

In this case, (19) reduces to

(33)

This equation, for example, is applicable when the two-port con-
sists of two isolated passive lossless lumped one-ports, and also
at frequencies at which a filter exhibits transmission zeros.

Note, that in (19), (21), (22), (29), (31), and (33), it is assumed
that the load resistance equals the reference impedance of
port 2. Of practical interest is the case when the reference im-
pedances and are chosen to be the terminating generator
and load resistances, respectively. The quantity is then the
available power of the generator and in (29)
and (31) is the associated group delayof the two-port.

IV. STORED ENERGY IN A PASSIVE LOSSLESSRECIPROCAL

SYMMETRICAL OR ANTISYMMETRICAL TWO-PORT

Suppose a reciprocal two-port is terminated in a matched load
and excited by a matched generator with an internal resis-

tance identical to the load resistance, i.e., .
This implies that the two reference impedancesand are
identical and equal to . Hence, if the two-port is also symmet-
rical, the scattering parameters and are related to each
other by

(34)

Similarly, for a passive lossless reciprocal antimetrical network

(35)

In both cases, (27) is satisfied and the t.a.s.e. in a passive lossless
reciprocal symmetrical or antimetrical network is given by (29)
when and (33) when . Equation (29)
has the form

(36)

where is the available power from the generator and
is the group delay.
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Fig. 2. Example two-port to verify the derived equations.

V. EXAMPLES

Consider the example network in Fig. 2, the scattering matrix
of which is given by

(37)

(38)

(39)

with respect to 1 reference impedances.
There is no energy stored in the admittance inverters. Thus,

the overall energy stored in this lossless reciprocal two-port may
be obtained by computing the voltages across the two capacitors

and and then adding up their stored energies

(40)

giving

(41)

Alternatively, the stored energy can be calculated using the
equations derived in this paper given the scattering matrix of
the two-port.

A. Symmetrical Network

Suppose the network in Fig. 2 is symmetrical, i.e.,
. The stored energy can then be computed from the

phase of the transmission coefficient

(42)

using (36), i.e.,

(43)

and is the group delay. This agrees with the result
obtained when (41) is used.

B. Nonsymmetrical Network

If, however, the network does not have any symmetry prop-
erties, i.e., , in this case, (36) gives

(44)

It is seen that this does not yield the stored energy in the network.
Equations (19) or (22) must be used instead to obtain the stored

energy in the example network, and it has been verified using
Maple V that this leads to the same result as in (41).

C. Frequency Transformations

Recently, [3] (36) has also been used to relate the stored en-
ergy in symmetrical low-pass filters to the stored energy

in bandpass filters obtained by applying the low-pass to
bandpass transformation [9]

(45)

Employing (36), it can be shown that the stored energy in the
derived bandpass filter is given by

(46)

This can, of course, be generalized to any other frequency trans-
formation. Predictions of the energy storage and, hence, the
power-handling capability in filters, can be reduced to the con-
sideration of the low-pass prototype from which it is derived.

VI. CONCLUSION

A rigorous derivation of the relationship between the total
t.a.s.e. in a passive lossless two-port and its scattering param-
eters has been presented in this paper.

In particular, it is shown that the t.a.s.e. in a passive lossless
reciprocal symmetrical or antimetrical two-port is proportional
to the group delay. Hence, it can be concluded that the t.a.s.e.
in a wide-range of commonly used passive filters is, in practice,
proportional to the group delay of the filter. This interesting re-
sult can be expected to lead to useful insight into the power-han-
dling capability of these types of filters, since the electromag-
netic fields, which can cause the dielectric breakdown in a filter,
are directly related to the t.a.s.e. in a filter.

The result also shows how the t.a.s.e. in a filter is related to
the t.a.s.e. of the low-pass prototype from which it is derived.
Hence, a prediction of the maximum field in a filter can be ob-
tained from the analysis of the low-pass prototype [3].

The direct-coupled-cavity filters considered by Young are
also lossless reciprocal symmetrical two-ports driven by a
matched generator and terminated in a matched load. Hence,
the group delay is proportional to the t.a.s.e. in these filters.
This agrees with Young’s intuitively derived relationship
between the t.a.s.e. and group delay [1], [2] for frequencies in
the passband.

This paper can be extended to the consideration of passive
lossless -ports ( ) connected to generators (

).
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